The Trophic Significance of Bacteria in a Detritus-based Stream Food Web
نویسندگان
چکیده
We compared relative use of streamwater dissolved organic carbon (DOC) by bacteria and the trophic significance of bacteria to invertebrates in two headwater streams at Coweeta Hydrologic Laboratory in North Carolina: a stream with all leaf litter inputs excluded for 1 yr, and a reference stream. Leaf litter standing crop in the treatment stream was ,1% that of the reference stream, and fine benthic organic matter (FBOM) was 50% lower than the reference. We used a whole-stream tracer addition of 13C-1 sodium acetate for 3 wk to label bacteria and hence their consumers during both July and December. Bacterial d13C was measured by collecting respired bacterial carbon. We estimated the contribution of bacterial carbon to consumers using a mixing model for invertebrates and bacteria. The acetate label declined exponentially downstream with a 10-m uptake length in each stream and season. FBOM and biofilm were the only detrital samples to show a strong label; both were more labeled in the litter-excluded stream. Bacteria in the litterexcluded stream had 7–10 times more label than those in the reference stream during both seasons, showing their higher relative use of streamwater DOC. The percentage of invertebrate carbon derived from bacteria was .20% for many taxa. This was significantly related to the percentage of amorphous detritus in invertebrate guts, suggesting that bacterial carbon supporting higher trophic levels was associated with amorphous detrital particles. Predatory invertebrates were labeled, showing that bacterial carbon was important for higher trophic levels. Some invertebrates were more highly labeled than the bacteria. Stenonema in the treatment stream contained eight times more label than measured bacteria. This suggests that they were using an unmeasured bacterial source such as bacteria in exposed epilithic biofilms, which had higher d13C than all other detrital components. Invertebrates in the treatment stream did not appear to use more bacterial carbon than in the reference stream despite a lower standing crop of detritus. Tallaperla, a shredding stonefly, derived 20–40% of its carbon from bacteria in both streams, even though it was more labeled in the treatment stream. Our estimates of the percentage of invertebrate carbon derived from bacteria were higher than those found in laboratory-based studies. To investigate reasons for this difference, we examined the possibility that bacterial carbon was principally found in exopolymers, as our labeling method would have labeled exopolymers. We found 6 g/ m2 of colloidal carbohydrates in the reference stream, which was five times greater than bacterial biomass; thus the high use of bacterial carbon by invertebrates may be a consequence of the availability of these polymers.
منابع مشابه
Research Article: Trophic dynamics analysis and ecosystem structure for some fish species of northern Oman Sea
In the present study, a trophic structure model for some fish species of the northern Oman Sea is developed through using mass balance modeling software, Ecopath with Ecosim (EwE). In this model, we simulated 16 functional groups spread across an area of 3998.20 km2 from 2017 to 2018. Mean trophic level in the area of the present study was 3.49. Values calculated for system omnivory and connect...
متن کاملClimate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation
Global warming and ocean acidification are forecast to exert significant impacts on marine ecosystems worldwide. However, most of these projections are based on ecological proxies or experiments on single species or simplified food webs. How energy fluxes are likely to change in marine food webs in response to future climates remains unclear, hampering forecasts of ecosystem functioning. Using ...
متن کاملNutrient enrichment reduces constraints on material flows in a detritus-based food web.
Most aquatic and terrestrial ecosystems are experiencing increased nutrient availability, which is affecting their structure and function. By altering community composition and productivity of consumers, enrichment can indirectly cause changes in the pathways and magnitude of material flows in food webs. These changes, in turn, have major consequences for material storage and cycling in the eco...
متن کاملLinking the brown and green: nutrient transformation and fate in the Sarracenia microecosystem.
Linkages between detritus-based ("brown") food webs and producer-based ("green") food webs are critical components of ecosystem functionality, but these linkages are hard to study because it is difficult to measure release of nutrients by brown food webs and their subsequent uptake by plants. In a three-month greenhouse experiment, we examined how the detritus-based food web inhabiting rain-fil...
متن کاملInvasive cordgrass modifies wetland trophic function.
Vascular plants strongly control belowground environments in most ecosystems. Invasion by vascular plants in coastal wetlands, and by cordgrasses (Spartina spp.) in particular, are increasing in incidence globally, with dramatic ecosystem-level consequences. We examined the trophic consequences of invasion by a Spartina hybrid (S. alterniflora x S. foliosa) in San Francisco Bay (USA) by documen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999